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Abstract

We propose the use of proper orthogonal decomposition (POD) techniques as a reduced
basis method for computation of feedback controls and compensators in a high pressure
chemical vapor deposition (HPCVD) reactor. In this paper, we present a proof-of-concept
computational implementation of this method with a simplified growth example for I11-V
layers in which we implement Dirichlet boundary control of a dilute Group III reactant
transported by convection and diffusion to an absorbing substrate with no reactions. We
implement the model-based feedback control using a reduced order state estimator based
on observations of the flux of reactant at the substrate center. This is precisely the type
of measurements available with current sensing technology. We demonstrate that the
reduced order state estimator or compensator system is capable of substantial control
authority when applied to the full system. In principle, these ideas can be extended to
more general HPCVD control situations by including multiple species with gas phase
reactions and surface reactions.
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1 Introduction

Production of advanced optoelectronic integrated circuits requires stringent control of
layer thickness and composition. These requirements can be addressed, in part, through
open-loop optimization [6, 21, 34]. However, because of process variability and the in-
creasing demands put on control of layer thickness and composition by state-of-the art
devices, real-time control of film growth is desirable [17, 37, 35, 7|.

Many materials utilized in today’s electronics industry are manufactured using chemical
vapor deposition (CVD) processes operating at low pressure. However, there are also
materials of potential industrial use that can not be adequately produced at desirable
process temperatures under low pressure conditions, e.g., InN films that exhibit relatively
high decomposition pressure as compared to other ITII-V compounds. In such cases, it
may be desirable to extend the CVD processing to higher pressures. We are presently
involved in a collaboration with material scientists at N.C. State University to design
and build such a HPCVD reactor with real-time sensing and control as an innovative
feature of this prototype reactor.

There are many technical issues associated with real-time control of a HPCVD reactor,
such as coupling of species transport, gas phase reactions, and surface reactions to film
growth and development of suitable sensing technology. We propose using accurate
model simulations of species transport and reactions to provide data about the state
of the system and to design state feedback controllers. In general, a full mathematical
model describing transport processes in CVD systems is given by a system of nonlinear
partial differential equations representing the continuity, momentum, energy, and species
equations of state. Therefore, numerical simulations and control designs of such systems
using finite element, finite difference, or spectral methods will lead to a very large system
of ordinary differential equations rendering real-time full model-based feedback control
design infeasible. To reduce the dimensionality of the system, we propose using the
method of proper orthogonal decomposition (POD) to more efficiently represent the
system data [27]. Recognizing that observation of the full state of the system can not
be experimentally realized with current sensing technology, we propose using a state
estimator or compensator based on P-polarized reflectance spectroscopy (PRS) sensing
technology, which provides the capability for real-time observation of the growth rate [5].

In this paper, we present a proof-of-concept implementation of this method with a sim-
plified growth example for III-V layers, which can, in general, be extended to more
experimentally relevant cases. Normally, during the growth of III-V films the Group
III reactants determine the growth rate and composition, since the Group V reactants
are supplied in overabundance, while the Group III reactants, possessing high sticking
coefficients, are supplied in dilute amounts relative to the carrier gas. We present im-



plementation of Dirichlet boundary control of a dilute Group III reactant transported
by convection and diffusion to an absorbing substrate with no reactions. Computational
fluid dynamics (CFD) simulations provide data on the full system and are used to con-
struct a POD reduced order model.

The control/compensator problem (or LQG tracking problem) is formulated as a linear
quadratic regulator (LQR) tracking problem, where the state of the system is estimated
via a compensator gain from observation of the flux of the reactant to the substrate
(assumed proportional to the growth rate), with the observed flux attempting to track a
desired flux value. Dirichlet boundary control at the inlet determines the mass fraction of
the incoming Group III reactant. We demonstrate that the reduced order state estimator
or compensator system is capable of substantial control authority when applied to the
full system. In principle, these ideas can be extended to more general HPCVD control
situations by including multiple species with gas phase reactions and surface reactions.

The utility of POD (also known under the names of principal component analysis [19]
and Karhunen-Loeéve expansion [20, 24]) as a method of feature extraction is well known
in statistical and pattern recognition fields [16] and has been applied in such diverse areas
as materials processing [27] and characterization of human faces [30]. The POD method
is a linear transformation of a multivariate data set into an optimal set of uncorrelated
variables (POD modes). The original multivariate data can be written as linear combi-
nations of the POD modes. In many cases the POD modes more efficiently describe the
variability of the original data and some dimensional reduction is possible by retaining
only the most important modes.

POD based approximation methods have been widely discussed in the context of turbu-
lent coherent flows [3, 12, 13, 15, 18, 25, 31] - see also the surveys [11, 26]. More recently,
the possibility of POD based control design has been proposed. In particular, the first
uses of POD approximations in optimization or open loop control were demonstrated in
27, 34] for model-based methods and subsequently in [28] for model-free methods. The
first use of POD approximations in feedback control design was reported in [8, 9] for
control of periodically disturbed structures. POD methods for state feedback were also
used at approximately the same time in [22] in an example for Burgers’ equation and
were later used in [1] in control design for the heat equation. To our knowledge, the
results reported below offer the first computational evidence of the successful use of POD
based methods for feedback control and compensator design in tracking problems for a
flow related system where only partial state observations are available: in this case in
the control of pulsed metallic vapors in a CVD reactor.

There are a number of nontrivial issues related to the use of reduced basis methods in
general and POD methods in particular as a foundation for approximation methods in



infinite dimensional systems such as those modeled by distributed parameter or partial
differential equation systems. The foremost revolves around whether the infinite dimen-
sional system itself can be approximated well by a finite span of basis elements. That
is, are the features of importance in a given investigation of the system essentially finite
dimensional in nature? There is growing evidence that the answer to this question is
positive for many structural systems and for a substantial number of fluid and electro-
magnetic applications. Even when this question can be answered in the affirmative, it
is not at all clear that one can use such an approach for control design or in inverse
problems related to damage detection (another area we are currently investigating with

POD based methods).

In particular, if one uses ‘snapshots’ of the uncontrolled system (as was done in [8, 9))
to construct the POD basis elements, there is little reason to expect that control design
based on this finite dimensional approximation will be effective when applied to the
original system. The controlled original system itself may require a different set of finite
dimensional elements for efficient approximation (or, worse yet may not be amenable to
a low order basis approximation). The results of [8, 9] suggest that, at least in some
situations, happily this is not the case. The approach we offer in this paper (which was
also successfully used in open loop control problems in [27]) illustrates that another tactic
can be effective. That is, one may wish to ‘snapshot’ on the system under several levels
of control input (not, in general, derived from any optimal or suboptimal design) in order
to take snapshots on the system under nontrivial control inputs.

In Section 2 below we describe the particular system under investigation here and describe
the simulations needed to develop POD based control design. A sample of some of our
computational results based on this approach is given in Section 3. Brief conclusions are
then summarized.

2 Methods

2.1 Governing Equations

The governing equations for the transport dynamics in CVD processes are described by
the following system of partial differential equations:
(mass)

op =
5 TV (p0) =0, (1)
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0 L.
<a:+v Vv>:—VP+V-F—p§ (2)
where the viscous stress tensor is of the form
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where in (5) we assume that there are no reactions in the gas phase. In addition, ¢ is
the gravitational acceleration, v, T, and P are the velocity, temperature, and pressure,
i, cp, and k are the viscosity, specific heat, and conductivity of the carrier gas, D is
the diffusivity of the reactant, and Y is the mass fraction of the reactant. The density
variations are modeled as p = py[1 — B(T — Tp)], where Ty is a reference temperature, py
is a reference density calculated from the ideal gas law at the reference temperature and
reactor pressure, and [ is the volume coefficient of expansion (8 = 1/T"). The boundary
conditions for the above system of equations (1)-(5) will be given in subsequent sections.

We summarize our use below of the system (1)-(5) in numerically investigating reduced
order control and compensator design. Since only a trace amount of Group III reactant
is mixed with the carrier gas, we can, first, solve (1)-(4) for steady state solutions using
a commercially available CFD finite element software package. These values are then
employed in a transient simulation of (5) to solve (again using standard finite element
procedures) for values to be used as ‘simulated experimental data’ or ‘time snapshots’
for (5). We then carry out the POD procedure described below to produce POD basis
elements {¥;}X | using POD nodal values {2z }X |. The control problem for (5) is then
approximated in penalty form (10), which is then written in weak or variational form
(11). A standard Galerkin (quadratic) finite element method is used to approximate
solutions of (11); this yields the full dimensional approximation of (11) that plays the
role of a reactor simulator. A reduced order (M << K) POD basis is used to approximate
solutions of (11) via a Galerkin procedure which yields the finite dimensional (low order)
approximation of (11) to be used in LQG control/compensator gain design.



2.2 CFD simulations

Specifically, we use a 2D rectangular geometry (Fig. 1) representing the longitudinal
cross section through the center of an HPCVD reactor with dimensions (height=0.011
m, length=0.156 m, substrate length=0.048 m) that are similar to the present N.C. State
reactor design.
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Figure 1: HPCVD reactor geometry.

The governing equations are discretized using the Galerkin finite element method with
weighted residuals for the degrees of freedom (v, P, and T'). A mixed formulation with
132 quadrilateral elements (corresponding to 453 nodes) is used with piecewise linear dis-
continuous elements for pressure, and quadratic (8-noded) elements for the other degrees
of freedom. Solutions for the variables v, P, T', and Y are obtained using simulations
with commercially available code (FIDAP, Fluid Dynamics International, Evanston, IL)
on a Silicon Graphics Power Indigo 2.

Steady-state simulation. Under the dilute approximation, steady-state solutions for
the velocity, temperature, and pressure are independent of the reactant concentration
and are, of course, time-independent. Therefore, the spatially-dependent solutions for
¢ and 7', appearing in (5), are obtained from a steady-state simulation of (1)-(4) at
atmospheric pressure with hydrogen carrier gas. Temperature dependent values for u, k,
and ¢, necessary for solution of (1)-(4) are linearly interpolated from measurements taken
from the available literature [23, 32, 36]. A parabolic velocity flow profile is specified at
the inlet (I'1), with an average inlet velocity of 0.1147 m/s. Room temperature boundary
conditions are imposed at the inlet and along the upper wall (I'2). Along the bottom
wall, the substrate (I'5) temperature is fixed at 800°K , with a non-linear temperature
decrease from the substrate edge to the inlet (I'6) and, similarly, from the substrate edge
to the outlet (I'4).

Reactant transport simulation. Trimethylindium is an organometallic precursor com-
monly used as a source material for CVD growth of III-V films where indium is one of
the constituents (e.g., InN). A transient simulation of trimethylindium (TMI) convection
and diffusion (5) is used to obtain data for construction of the POD modes. This system,



including a nonzero boundary input, is given by

a_Y_FQ‘;’ﬁY = %6 (pDﬁY)

ot
Y(0,7) = 0
Y(t,7) = 1 onI'l (6)
Y(t,7) = 0 on I'5
3_Ya(f{_x) I on T2UT3UT4UTE,

where Y is the mass fraction of TMI and 8% denotes the outward normal derivative.
Initially, the TMI mass fraction is assumed zero everywhere in the reactor. A normalized
TMI mass fraction of one (Y = 1) is maintained as a nontrivial input ‘control’ at the inlet
(I'1). The reactor walls (I'2, I'4, and I'6) are non-absorbing, and the substrate (I'5) is
assumed to be perfectly absorbing (concentration of zero). Values for ¢ and p appearing
in (5) are provided by the steady-state solutions. Temperature dependent values for the
diffusivity D of TMI in hydrogen are linearly interpolated from values taken from the
available literature [33]. Transport of the TMI is simulated using standard finite elements
over a 2-s time period, sufficiently long for achieving a steady-state concentration in the
reactor. Time integration is implemented using a backward Euler method with fixed time
steps (0.02 s). Intermediate solution values are stored at each time step to be used later
in construction of the POD basis elements.

2.3 Construction of POD Modes

The reactant transport simulation described above provides a multivariate data set con-
sisting of K vectors X = {zV,zY,..., 2%}, each vector representing N nodal values of the
species concentration in the reactor at different times during the period that the reactant
was entering the reactor and reaching its equilibrium distribution. In this calculation,
100 time snapshots are available but only K = 60 are used in the POD construction (see
Figure 3 and the associated discussion below). This original data set X is transformed
to a new set of uncorrelated variables (POD modes)

Z={N, 2, . N =X, (7)

where the columns of ® = {¢f @K ... ¢%} are the eigenvectors of the product matrix
(X' X)pE = NoX, ranked, in descending order, with respect to the associated eigen-
value. The prime superscript denotes the transpose of the matrix. The POD modes Z

are orthogonal 2V - zjv = A;6;j, and the transformation of variables preserves the data
variability
K K K
Z(X'X)kk :Z(Z’Z)kk :Z)\k. (8)
k k k



Expansion of the original data X in terms of the most significant POD modes minimizes
the mean square error of a reduced basis representation [16]

Z székj, 9)

where M < K. The most significant POD modes are those corresponding to the largest
eigenvalues, since the ratio of an eigenvalue to the summation of eigenvalues, s/ ZJK Ajs
gives the percentage of the mean square error unaccounted for by eliminating the corre-
sponding POD mode 22 [16] in the reduced basis representation. The best stopping point
in the expansion (9) depends, in general, upon the application and various algorithms
have been proposed [19]. For our feedback control /compensator application, we choose
the order M of our reduced system to be the maximum order such that the associated
finite dimensional control system is both controllable and observable while an acceptable
level (99.72% in this case, see Section 3 below) of data variability is captured.

2.4 Penalty Boundary Formulation of the Control Problem

We use a penalty boundary formulation of the time-dependent species equation (5) with-
out reactions to describe the transport of TMI in the reactor

9 +5.Vy = LV (DY)
Y(0,7) = yo(2)
oY (t. 7 ,
a(m 7)) _ L(y(t,#) —u(t)) onT1 (10)
(D) _ 1y =
G (t x) on I'h
a_Ya(f{_f”) 0 onT2UT3UT4UTS,

where Y is the mass fraction of TMI, 6% denotes the outward normal derivative, and
u(t) is the control. Under sufficient regularity, one can argue that solutions of (10), in the
limit as € — 0, approximate solutions for the problem with conditions Y (¢, Z) = u(t) on
I'l, and Y (¢t,%) = 0 at I'5 (see [4, 10] for related discussions). For the results presented
here, a value of € = 1 x 1073 is used.

Writing (10) in weak form with test functions w;, we obtain
. L - [N
/E—wjda — —/Q(v-VY)wde—/QDVY-ijdQJr/Q;ijVY-Vde

1
+% w; DY ds — — w;Duds .
rirs € Jr1

(11)



Spatially dependent values for ¢, T', p, and D are interpolated from the nodal values
obtained from the CFD simulations.

As we have explained above, two discretization formulations are applied to (11). The
first formulation, a finite element approximation, produces the full system (which plays
the role of a reactor simulator). In this case, the TMI concentration in (11) is approxi-
mated using standard finite element discretization with N = 453 quadratic interpolation
functions v; and N nodal coefficients yfv

N
YD) =Dy ()(2) - (12)
i=1
Choosing the test functions to be w; =1, 7 =1,2,..., N, we obtain in a standard way
the matrix equation
g (t) = ANy (t) + B u(t), (13)

where AV is an N x N matrix, BY is a vector of length N, and the control u is a scalar
control function.

The second discretization formulation produces the reduced basis model. In this case,
we first use the POD modes {2} } to obtain the POD elements

N
Ui(Z) =Y zuti(T), k=1,2,...,K, (14)
=1

where the functions ;(Z) are the finite element quadratic interpolation functions. The
reactant mass fraction is approximated as a linear combination of the POD basis elements
corresponding to the most significant POD modes

Y(1,7) = 3y (0(@) (15)

where, in this case, M << K << N. Application of this approximation to (11) (in this
case we use POD test functions w; =¥, i =1,2,..., M) yields

M (t) = ANy (t) + BMu(t), (16)

where A is an M x M matrix, and B is a vector of length M.



2.5 Control

To control the reduced order system (16), we observe the flux of reactants —pDa— to
n
the center of the substrate (&), which is approximated as
M
oV
¢ = =2 pD——= y(t) = (HY)'y"(0). (17)
k=1 Z

Tp

We seek the optimal control u* for (16) such that the output ¢* tracks a signal gr (the
desired flux at Z,), minimizing the generalized performance index (e.g., see |2, 29))

V (yo, u(-)) = /Uoo W/ R+ (§") Q0™ + (6™ — ar)/Qu(¢™ —gr)| dt . (18)

Choosing Q2 = 12I, R=1, Q1 =11, ¢ = (EM)Yy™, (HM)Y =1 - LM(HM) and
LM = FM((HMYHM)~!| we can rewrite this performance index as

Vi u() = [ [wRe+ @M - o YQu" — )] at, (19)

where 7, and 7y are design parameters, I is the identity matrix, Q = HMQy(HM)' +
HMQ(HMY | and y¥ = LMqr is the desired state trajectory. This is a standard formu-
lation for a ‘tracking’ control problem [2, 29] and for which a complete theory is known
(for a summary and references see Chapter 7 of [7]). The optimal control is given by
u* = —KMyM — g™ where the gain is given by (see p84-85 of [2], [29], or [7])

KM = R7Y(BM)T1, (20)
IT satisfies the algebraic Riccati equation (ARE)
0 =AM + (AMYTI — IBMRY(BM)TI + Q, (21)
and the tracking term g™ is given by
g =R (BY), (22)
where
b=[(AY — BY KM Quy. (23)

2.6 State Estimation in the Reduced Order Model

Application of the tracking control to the reduced order model (16) yields

gM = AMyM _ pM MM pM M

20 = (YY) 24

10



with KM and g™ defined in (20) and (22), respectively. Note that this formulation
requires complete reduced order state feedback for the gain K of (20). Since the full
state of the system (or even the reduced order system) in the reactor can not be observed,
we implement a state estimator or compensator design based on observation (17) of the
flux at the center of the substrate. This yields (see [29] or Chapter 8 of [7] and the
references therein) the coupled system

gM = AMyM _ BMKMyéM _ pMgM

. 25
e = Ayl + FM(HM)yM — BMgM (25)

where y is the M x 1 vector approximation to the approximate state y™, the compen-
sator system operator A. is given by
A, =AM — pM(gMy — BM KM, (26)
and the compensator gain (Kalman filter) is given by
FM =y HMy 1, (27)
The matrix ¥ satisfies the dual ARE given by
AMY - 2(AMY —sHMV Y HMYY + U =0, (28)

where U is a symmetric positive semi-definite matrix design parameter and V' is a sym-
metric positive definite matrix design parameter. We choose U = [ and V = r3, where 3
is a third parameter at our disposal in designing the overall feedback control /compensator
system.

This implementation of the state estimator yields the following closed-loop system for
‘optimal’ control of the reduced order model

yéM - FM(HM)I AM_BMKM_FM(HM)/ yéw —BMgM ’
with the optimal control
uw' = —KMyM _ oM, (30)

e

2.7 Control of the Full System Using a Reduced Order State
Estimator

Use of the design given in (29) and (30) can be expected to produce a stabilized and
generally efficient system for control of the reduced order model (16). However, this is

11



not the issue of practical importance in our efforts. The goal, of course, is to design a
feedback control /compensator system for (10) (or in weak form (11)), which we hope will
be a good approximation (for proper choice of €) for the actual physical dynamics (1)-(5),
i.e., transient solutions of (5) with (1)-(4) in steady state. Thus, the real measure of the
value of the control /compensator system of Sections 2.5-2.6 is how well it performs when
used in the actual physical system. Short of applying the control/compensator system
to the physical reactor in experiments, our best assessment of its utility is when applied
to the ‘full’ system (13). That is, we should computationally test the reduced order
control/compensator design based on (20)-(23), (26)-(30) in the system (13).

Application of the reduced order tracking control to the full system with the reduced
order state estimator yields

gN B AN —BNKM yN N —BNgM (31)
yéM - FM(HN)I AM_BMKM_FM(HM)I yéw —BMgM )

where H” is the observation vector for the full-dimensional system ¢~ = (HY)'y™(t),
and HM KM g™ and FM are as defined in (17), (20), (22), and (27), respectively. The
optimal control is given by (30). We report on our simulations for system (31) with
different values of the design parameter r; in the results of Section 3. Values of ro and
r3 were varied and then fixed at nominal performance values in the calculations reported
below.

2.8 Control Implementation

The governing equations (10) are nondimensionalized prior to the calculation of the coef-
ficient matrices using a length scale of 1x 1072 m, a diffusion coefficient scale of 1.15x 1073
m?/s, and a density scale of 4.04 X 1072 kg/m3. The POD modes and the coefficient ma-
trices AN, BN, HN AM BM and H™ in (31) are calculated using in-house C programs.
All other matrix calculations are implemented in the Matlab computing environment
(The Math Works Inc., Natick, MA). The optimal gain matrix K™ and Riccati solu-
tion II are determined using Matlab’s lgr() function and the dynamical equations are
integrated using Matlab’s ode23s() solver.

12



3 Results

We report in sequential form results from the series of computations and simulations
described in detail in Section 2.

3.1 CFD Simulation Results

We first report on results of the CFD package simulations described in Section 2.2.
Contour plots of the steady-state solutions of the temperature and the x-component
of the velocity (Fig. 2a-b) give an indication of the transport conditions in the reactor.
With the top wall and inlet maintained at room temperature, there is a steep temperature
gradient (Fig. 2a) upstream from the substrate. In the region above the substrate, the
isotherms run parallel to the hot substrate and the opposite cold wall. The velocity of
the gas increases more than 4-fold as it passes in the vicinity of the hot substrate (Fig.
2b), while the y-component of the velocity (not shown) remains small throughout the
reactor.

min ——\_)
T TAxX

(a) Temperature

o

e ee—————————F = 7

(b) x-component of velocity

max

min

(c) TMI concentration
Figure 2: Contour plot of steady-state values for the (a) temperature in 100°K steps with T4, =750°K
and Ty, =350°K , (b) x-component of the velocity in 0.1 m/s steps with vy,0,=0.45 and v;;,=0.05

m/s, and the (c¢) equilibrium distribution of TMI 2 s after the reactants entered the reactor, with contour
lines representing steps of 0.2 in the normalized TMI mass fraction (Y,;q:=0.9 and Y,,,;,=0.1).

13



A contour plot of the equilibrium distribution of TMI (at t = 2 s) shows a steep gradient
in the TMI concentration (Fig. 2c) at the leading edge of the substrate. There is a
corresponding peak in the flux of TMI to the upstream end of the substrate (not shown).
A plot of the average flux of TMI to the substrate as a function of time (Fig. 3) shows that

an equilibrium value was reached approximately 1 s after the reactant was introduced
into the reactor.

I © °
B )] [ee]
T T T

| | |

AVERAGE FLUX (10 kg/m®-s)

o
N
T

0 0.5 1 15 2
TIME (s)

Figure 3: Average flux of TMI to the substrate as a function of time.
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3.2 Construction of POD Modes

Since equilibrium is reached after one second (Fig. 3), only the first sixty intermediate
solution vectors (K = 60), representing the transport of TMI into the reactor from 0-
1.2 s, are used to construct the POD modes. Each solution vector represents the TMI
concentration at the 453 nodal points and corresponds to a time increment of 0.02-s in
the time range from 0 to 1.2 seconds. A plot of the captured variability (Z]]‘i 1A/ Z]K Aj)
as a function of the number of modes (M < 60) used (Fig. 4) shows that the original
data is well-represented by 7 modes, or fewer. This strongly suggests using M < 7 in our
reduced order model.

100

9 7

98- 7

971 4

96~ q

% VARIABILITY REPRESENTED

95 q

0 1 2 3 7 8 9 10

4 5 6
NUMBER OF MODES

Figure 4: Total percent variability captured as a function of the number of modes.

The rank of the controllability matrix has been found to be a useful criterion (see the
discussion in [8, 9]) for determining the number of modes to use in control design appli-
cations for the reduced basis representation (15). The controllability of the linear system
(16) is determined from the rank of the controllability matrix C, where

C(AM,BM) = [BM | AMBM | (AM)2BM | ... | (AM)M-1BM], (32)

Using standard results from optimal control theory [14], the M-dimensional linear system
(16) is controllable if, and only if, the rank of the controllability matrix is equal to M.
Similarly, the rank of the observability matrix O indicates the observability of the linear
system (24), where

O(AY, M) = [HY | (AMYEY | (M) HY || ((AM)M Y HM. (33)

15



For our system under investigation here, the ranks of the controllability and observability
matrices are recorded in Table 1 as a function of the number of modes in the reduced order
model. The Table demonstrates that the rank of the controllability does not increase with
additional modes after addition of the fifth mode. Similarly, the rank of the observability
matrix does not increase with additional modes after addition of the sixth mode. Based on
these results, we use in our control/compensator applications the first five most significant
POD modes (M = 5), capturing 99.72% of the data variability, to construct our reduced
order model (16).

Table 1: Rank of the Controllability and Observability Matrices

Reduce Order Model Rank

Dimension M c O
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 5 6
7 5 6
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3.3 Control of Full System Using the Reduced Order State Es-
timator

We carried out numerous simulations in investigating performance of the control /compen-
sator design. A set of representative results are depicted here, where the reduced order
state estimator is used to control the full system (31) using a non-dimensional tracking
value of gr = 0.183 and design parameter values of 7 = 100, 180, or 10000, r, = 1 x 102,
and 73 = 1 x 10*. Initially, the solution vector for the estimated state is given a small
nonzero value (yM = 1 x 107%), while the full system solution is given an initial value
of zero (y™ = 0). As a result of the latter condition, the observed flux to the substrate
(Fig. 5) is initially zero and this zero flux persists for the time it takes the reactant
introduced at the inlet to reach the substrate. (Recall that the control value represents
the reactant mass fraction at the inlet.) As time progresses, the observed flux approaches
and oscillates about the target flux value. The amplitude of the oscillations increases as
the control parameter r; is increased, i.e., as more weight is placed on achieving the
target flux. Eventually a steady-state flux value is attained, which exceeds the target
flux value for the case of r; = 10000 and undershoots the target flux value for the case
of 1 = 100. With a design parameter value of r; = 180, the observed flux achieves
the target flux value. The steady state flux attained with the control parameter value
r1 = 10000 is essentially the asymptotic value for large ri, i.e., there is essentially no
difference between the steady state results for 7; = 1000 and r; = 10000.
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Figure 5: Observed flux compared to the desired flux (solid line) as a function of non-dimensional time
with different levels of control: 71 = 100 (dotted line), ;1 = 180 (dash-dot line), ; = 10000 (dashed

line).
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A plot the norm of the difference between the full system solution and the state esti-
mated solution as a function of time (Fig. 6) also shows oscillations, as initially, the state
estimated solution did not closely track the full system solution. (Recall that the com-
pensator or state estimator is an asymptotic estimator - see [2, 7|). The greater the level
of control (larger r;) the larger are the magnitude of the oscillations. The oscillations,
representing overshooting and undershooting of the adjustments to the state estimated
solution, eventually (asymptotically) are attenuated and the difference between the two
solutions reaches a steady-state value.
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Figure 6: The norm of the difference between the full state and the POD estimated state with different
levels of control: r1 = 100 (dotted line), r; = 180 (dash-dot line), 71 = 10000 (dashed line).

A plot of the control value u as a function of time (Fig. 7) shows large initial control
values oscillating and decreasing in time, eventually reaching steady-state values. Both
the initial values and the magnitude of the oscillations increase as r; increases, as more
weight is placed on achieving the desired flux and less weight is placed on the cost of
control. Physically, the control values represent the mass fraction of TMI at the inlet.
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Figure 7: The control as a function of time with different levels of control: r; = 100 (dotted line),
r1 = 180 (dash-dot line), r; = 10000 (dashed line).

4 Conclusion

We have demonstrated a proof-of-concept computational implementation of reduced or-
der feedback control of HPCVD III-V film growth which can, in principle, be extended
to more experimentally relevant cases involving multiple species with reactions. We im-
plement the control using a reduced order state estimator based on observations of the
flux of TMI at the substrate center, which is precisely the type of measurements avail-
able with current PRS sensing technology. The POD-based design method allows us to
reduce the order of the system by a factor of 90 with respect to a standard finite element
representation (from N = 453 to M = 5), thus making real-time feedback control with
partial state observations a feasible goal in HPCVD reactors operating in steady state
flow regimes with pulsed vapor reactant inputs. This is, in fact, a conservative estimate of
the dimensional reduction capability, since the number of nodes used here was minimized
to reduce the simulation time of the full system.

Acknowledgments

This work was supported in part by DOD/AFSOR MURI Grant No. F49620-95-1-0447.
The authors are grateful to Dr. Klaus Bachmann and other members of the applied
math/material sciences team at N.C. State for numerous helpful conversations during
our control methodology development efforts, part of which are reported here.

19



References

1]

2]

[10]

[11]

[12]

Atwell, J.A., and B. King, Proper orthogonal decomposition for reduced basis feed-
back controllers for parabolic equations, January, 1999, preprint.

Anderson, B.D.O., and J.B. Moore, Optimal Control: Linear Quadratic Methods,
(Prentice Hall, Englewood Cliffs, NJ, 1990).

Aubry, N., P. Holmes, J.L. Lumley, and E. Stone, The dynamics of coherent struc-
tures in the wall region of a turbulent boundary layer, Journal of Fluid Mechanics
192, 115-173 (1988).

Babuska, I., The finite element method with penalty, Mathematics of Computation
27, 221-228 (1973).

Bachmann, K.J., N. Sukidi, C. Hopfner, C.Harris, N.A. Dietz, H.T. Tran, S. Beeler,
K. Ito, and H.T. Banks. Real-time monitoring of steady-state pulsed chemical beam
epitaxy by p-polarized reflectance, J. Crystal Growth 183, 323-337 (1998).

Bachmann, K.J., H.T. Banks, C. Hopfner, G.M. Kepler, S.LeSure, S.D. McCall,
and J.S. Scroggs, Optimal design of a high pressure organometallic chemical vapor
deposition reactor, Mathematical and Computer Modelling (to appear).

Banks, H.T., R.C. Smith, and Y. Wang, Smart Material Structures: Modeling,
Estimation and Control, (Maisson/J.Wiley, Paris/Chichester, 1996).

Banks, H.T., R.C.H. del Rosario, and R.C. Smith, Reduced order model feedback
control design: Numerical implementation in a thin shell model, CRSC Tech Rep
98-27, N.C. State University, July 1998; IEEE Trans. Auto. Control, submitted.

Banks, H.T., R.C.H. del Rosario, and R.C. Smith, Reduced order model feedback
control design: Computational studies for thin cylindrical shells, CRSC Tech Rep
98-25, N.C. State University, June 1998.

Barrett, J.W. and C.M. Elliot, Finite element approximation of the Dirichlet prob-
lem using the boundary penalty method, Numerische Mathematik 49, 343-366
(1986).

G. Berkooz, Observations on the proper orthogonal decomposition, Studies in Tur-
bulence, eds.: T.B. Gatski, S. Sarkar, and C.G. Speziale, (Springer-Verlag, New
York, 1992), 229-247.

Berkooz, G., P. Holmes, and J.L. Lumley, The proper orthogonal decomposition in
the analysis of turbulent flows, Annual Review of Fluids Mechanics 25, N5:539-575,
(1993).

20



[13]

[14]
[15]

[19]
[20]

[21]

[22]

[24]

[25]

[26]

Berkooz, G., P. Holmes J.L. Lumley, and J.C. Mattingly, Low-dimensional models of
coherent structures in turbulence, Physics Reports-Review Section of Physics Letters
287, N4:338-384 (1997).

Brogan, W.L., Modern Control Theory, (Prentice Hall, NJ, 1991).

Chambers, D.H., R.J. Adrian, P. Moin, D.S. Stewart, and H.J. Sung, Karhunen-
Loeve expansion of Burgers’ model of turbulence, Phys. Fluids 31, 2573-2582 (1988).

Fukunaga, K., Introduction to Statistical Pattern Recognition, (Academic Press,
NY, 1972).

Gevelber, M., M. Toledo-Quinones, and M. Bufano, Towards closed-loop control
of CVD coating microstructures, Materials Science & Engineering A 209, 377-383
(1996).

Iollo, A., S. Lanteri, and J.A. Désidéri, Stability properties of POD-Galerkin ap-
proximations for the compressible Navier-Stokes equations, INRIA Rep. de Rech.
no. 3589, December, 1998, Sophia Antipolis.

Jackson, J.E.; A User’s Guide to Principal Components, (Wiley, NY, 1991).

Karhunen, K., Zur spektral theorie stochasticher prozesse, Ann. Acad. Sci. Fennicae
Ser. A1 Math Phys. 37, (1946).

Kepler, G.M, C. Hopfner, J.S. Scroggs, K.J. Bachmann, Feasibility of a vertical
reactor for high pressure MOCVD, Materials Science & FEngineering B 57, 9-17
(1998).

Kunisch, K., and S. Volkwein, Control of Burgers’ equation by a reduced order ap-
proach using proper orthogonal decomposition, Optimierung und Kontrolle Bericht
Nr. 138, September, 1998, Universitat Graz, Austria.

Lide, D.R, and H.V. Kehiaian, CRC Handbook of Thermophysical and Thermo-
chemical Data, (CRC Press, Boca Raton, 1994).

Loeve, M., Functions aleatoire de second ordre, Compte Rend. Acad. Sci. (Paris),
220 (1945).

Lumley,, J.L., The structure of inhomogeneous turbulent flows, in Atmospheric Tur-
bulence and Radio Wave Propagation, A.M. Yaglom and V.I. Tatarski, eds., (Nauka,
Moscow, 1967) 166-178.

Lumley,, J.L., Stochastic Tools in Turbulence, (Academic Press, New York, 1970).

21



[27]

28]

[29]

Ly, H.V., and H.T. Tran, Proper orthogonal decomposition for flow calculations and
optimal control in a horizontal CVD reactor, CRSC Tech Rep 98-13, N.C. State
University, March 1998; Quarterly of Applied Mathematics, to appear.

Ly, H.V, and H.T. Tran, Modeling and control of physical processes using proper or-
thogonal decomposition, Computers and Mathematics with Applications, to appear.

Russell, D.L., Mathematics of Finite-Dimensional Control Systems: Theory and
Design, (Marcel Dekker, New York, 1979).

Sirovich, L., and M. Kirby, Low-dimensional procedure for the characterization of
human faces, J. Opt. Soc. Am. 4, 519-524 (1987).

Sirovich, L., Chaotic dynamics of coherent structures, Physica D 37, 126-145 (1989).
Svehla, R.A., NASA Technical Report R-132, 1962.

Theodoropolous, C., N.K. Ingle, T.J. Mountziaris, Z.-Y. Chen, P.L. Liu, G.
Kioseoglou, and A. Petrou, Kinetic and transport modeling of the metallorganic
chemical vapor deposition of InP from trimethylindium. J. Electrochem. Soc. 142,
2086-2094 (1995).

Theodoropolou, A., R.A. Adomaitis, and E. Zafiriou, Model reduction for optimiza-
tion of rapid thermal chemical vapor deposition systems, IEEE Trans. Semiconduc-
tor Manuf. 11, 85-98 (1998).

Warnick, S.C., and M.A. Dahleh, Feedback control of MOCVD growth of submicron
compound semiconductor films, IEEE Trans. Control Systems Tech. 6, 62-71 (1998).

Bayazitoglu, Y., M.N. Ozisik, Elements of Mass Heat Transfer, (McGraw Hill, NY,
1988).

Zhou, J.J., Y. Li, D. Pacheco, H.P. Lee, and X. Liu, Virtual control simulator for
closed-loop epitaxial growth, J. Crystal Growth 175/176, 52-60 (1997).

22



